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1 Observing Macroscopic Quantities From Microscopic States

1.1 Recap

We have a phase space (M, \) which is a o finite but not finite measure space. The energy
of one particle is ¢ : M — [0, 00), where min ¢ = essmin¢ = 0. Then we know that

A< ({<p1,...,pn> €M™ a1, ) = > elpi) € I})
i=1
= exp (n -sup s(x) + 0(n)> ,

xel
where

s(@) = nf{s"(8) + B},

We also have the Fenchel-Legendre transform
s*(B) = 10g/e’3¢.

B achieves equality in the definition of s

<= s has a tangent of slope g at z
<= Dys(z) < < D_s(x)

= (B4 (=s(x)) = bz

= D_s"(8) < — < Dys"(3)
<

s* has a tangent of slope —x at 3.

Using s*, we can prove:

. logA({p =0}) B — o0
s™(B) — {Oo 510,



s* is strictly decreasing and strictly convex.

s* is differentiable on (0, c0).

oy [osA(e =01 w10
o0 xr — OQ.

e s is strictly increasing and strictly concave.

e s is differentiable on (0, 00).

1.2 Behavior of ¢

Let’s analyze the behavior of s':

Proposition 1.1.

oo x— 0.

S,(x)%{o T — 00

Instead of a formal proof, here are some pictures. Look at the possible slopes we can

get for points on the graph of s and how they correspond to slopes for points on the graph
for s*.
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To get slope —z for very large x in the graph of s*, we need very small 3.
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1.3 Observing macroscopic quantities froms microscopic states

Now imagine we are looking at some other macroscopic observable quantity of the micro-
scopic state (pi,...,pn) € M™. We will study functions for the form

=1

If M =R3 x R3, we could take v(r,p) = 1p(r), which indicates whether a particle is in D
or not in D; then W¥,, would be the total number of particles in D.

We need some regularity. A simple sufficient condition is that ¢ is bounded. A
weaker but still sufficient condition is that for every 8 > 0, there is an € > 0 such that
[ e PPe™ 1 d\ < oo for all 7y € (—¢,¢).

Let’s assume v is bounded, and we’ll ask about the distribution of ¥,, on the approxi-
mate level set {1®,, € I'}, where I is a small interval. We need to compare A\*"({1®,, € I})
and A" ({1®, € I,1¥,, € J}). We use the generalized type-counting machinery with R?
to get an asymptotic for this:

vo({laner v eaf)—xe ({@1, pa) €M™ iizn;«o(m)w(pi)) &1 J})

= exp <n - sup  S(w,y)+ 0(n)>,
(z,y)eIxJ

where 5(z,y) : R? — [~00, 00) is an upper semicontinuous, concave function with

5(x,y) = iﬁnwf{g*(ﬁ, v) + Bz + vy}
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and Fenchel-Legendre transform
s (B,y) = log/e_ﬁs"e_w dA.

Here, we assume v is bounded, || < M, so

@*(5,7>={°° p=0

<oo B>0.

Here, s(z,y) < s(z) for all y € R. We want to find a yo such that s(x,yo) = s(x) and
S(z,y) < s(z) for any other y. This will tell us that conditioned on ® being x, we are likely
to have ¥ be yg and not likely to have any other y. We have

s(z) = inf {log/e_ﬁ“" dA —I—B:r:},

B8>0

which is greater than or equal to

S$(x,y) = inf log/e_ﬁ@e_w d\+ Bz + vy ¢ .
B>0,7eR

Lemma 1.1. 5(z,y0) = s(x) and s(z,y) < s(z) for any other y, where

e PP d)
Yo = M = (Y, up)
and
e—Be(p) dX(p)

dps(p) = W
is the Gibbs measure obtained from X, @, .

Proof. First, s is differentiable, so for every x > 0, there is a unique 8 > 0 such that
s(x) = log [ e P9 d\ + Bx. To achieve 3(x,y9) = s(z), we must have that the function
v+ log [ e BPe= 1 d\ + Bx + yyo achieves its minimum uniquely at v = 0. This function
of v is convex (by Holder), strictly convex if ¢ is not a.s. constant, and differentiable.
Assuming 1) is not a.s. constant, we need yg such that

387 {log/e_ﬂ“"e_w d\ + Bz + 'VQO} =0

at v = 0. This is the derivative of the log of the moment generating function. Differentiate
under the integral to get

0 . [ —he BPe= 1Y d)
—1 Fee 1 d\ = = - .
oy 8 / e Jefevdn |, . 5]
So g5l 1l=0 = —(¥, ;1g) + yo, and this equals 0 iff yo = (3, ug). O
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Corollary 1.1.

1 1
(o] - | o s

where ¢ is a constant, I is a short enough interval containing x, and we are using conditional

probability notation.

Remark 1.1. Given %@n ~ x, we found that

U, ~ n(its average over {1®, ~ n}!)

n{i, 15)
— (o) + -+ U(pa), 13"

= / v, dﬂﬁ,na

e~ B®n(p1;.-,pn) AN (p)

%

where

dﬂﬁ,n(pla s 7p7l) - fefﬂq)n d\xn =pp X

is called the canonical ensemble measure.

IThis is called the microcanonical ensemble.
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