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1 Observing Macroscopic Quantities FromMicroscopic States

1.1 Recap

We have a phase space (M,λ) which is a σ finite but not finite measure space. The energy
of one particle is ϕ : M → [0,∞), where minϕ = ess minϕ = 0. Then we know that

λ×n

({
(p1, . . . , pn) ∈Mn :

1

n
Φn(p1, . . . , pn) :=

1

n

n∑
i=1

ϕ(pi) ∈ I

})

= exp

(
n · sup

x∈I
s(x) + o(n)

)
,

where
s(x) = inf

β>0
{s∗(β) + βx}.

We also have the Fenchel-Legendre transform

s∗(β) = log

∫
e−βϕ.

β achieves equality in the definition of s

⇐⇒ s has a tangent of slope β at x

⇐⇒ D+s(x) ≤ β ≤ D−s(x)

⇐⇒ s∗(β + (−s(x)) = −βx
⇐⇒ D−s

∗(β) ≤ −x ≤ D+s
∗(β)

⇐⇒ s∗ has a tangent of slope −x at β.

Using s∗, we can prove:

•

s∗(β)→

{
log λ({ϕ = 0}) β →∞
∞ β ↓ 0.
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• s∗ is strictly decreasing and strictly convex.

• s∗ is differentiable on (0,∞).

•

s(x)→

{
log λ({ϕ = 0}) x ↓ 0

∞ x→∞.

• s is strictly increasing and strictly concave.

• s is differentiable on (0,∞).

1.2 Behavior of s′

Let’s analyze the behavior of s′:

Proposition 1.1.

s′(x)→

{
0 x→∞
∞ x→ 0.

Instead of a formal proof, here are some pictures. Look at the possible slopes we can
get for points on the graph of s and how they correspond to slopes for points on the graph
for s∗.

To get slope −x for very large x in the graph of s∗, we need very small β.
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1.3 Observing macroscopic quantities froms microscopic states

Now imagine we are looking at some other macroscopic observable quantity of the micro-
scopic state (p1, . . . , pn) ∈Mn. We will study functions for the form

Ψn(p1, . . . , pn) =
n∑
i=1

ψ(pi).

If M = R3 ×R3, we could take ψ(r, p) = 1D(r), which indicates whether a particle is in D
or not in D; then Ψn would be the total number of particles in D.

We need some regularity. A simple sufficient condition is that ψ is bounded. A
weaker but still sufficient condition is that for every β > 0, there is an ε > 0 such that∫
e−βϕe−γψ dλ <∞ for all γ ∈ (−ε, ε).

Let’s assume ψ is bounded, and we’ll ask about the distribution of Ψn on the approxi-
mate level set { 1

nΦn ∈ I}, where I is a small interval. We need to compare λ×n({ 1
nΦn ∈ I})

and λ×n({ 1
nΦn ∈ I, 1

nΨn ∈ J}). We use the generalized type-counting machinery with R2

to get an asymptotic for this:

λ×n
({

1

n
Φn ∈ I,

1

n
Ψn ∈ J

})
= λ×n

({
(p1, . . . , pn) ∈Mn :

1

n

n∑
i=1

(ϕ(pi), ψ(pi)) ∈ I × J

})

= exp

(
n · sup

(x,y)∈I×J
s̃(x, y) + o(n)

)
,

where s̃(x, y) : R2 → [−∞,∞) is an upper semicontinuous, concave function with

s̃(x, y) = inf
β,γ
{s̃∗(β, γ) + βx+ γy}.
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and Fenchel-Legendre transform

s̃∗(β, γ) = log

∫
e−βϕe−γψ dλ.

Here, we assume ψ is bounded, |ψ| ≤M , so

s̃∗(β, γ) =

{
∞ β = 0

<∞ β > 0.

Here, s̃(x, y) ≤ s(x) for all y ∈ R. We want to find a y0 such that s̃(x, y0) = s(x) and
s̃(x, y) < s(x) for any other y. This will tell us that conditioned on Φ being x, we are likely
to have Ψ be y0 and not likely to have any other y. We have

s(x) = inf
β>0

{
log

∫
e−βϕ dλ+ βx

}
,

which is greater than or equal to

s̃(x, y) = inf
β>0,γ∈R

{
log

∫
e−βϕe−γψ dλ+ βx+ γy

}
.

Lemma 1.1. s̃(x, y0) = s(x) and s̃(x, y) < s(x) for any other y, where

y0 =

∫
ψe−βϕ dλ∫
e−βϕ dλ

= 〈ψ, µβ〉

and

dµβ(p) =
e−βϕ(p) dλ(p)∫
e−βϕ dλ

is the Gibbs measure obtained from λ, ϕ, β.

Proof. First, s is differentiable, so for every x > 0, there is a unique β > 0 such that
s(x) = log

∫
e−βϕ dλ + βx. To achieve s̃(x, y0) = s(x), we must have that the function

γ 7→ log
∫
e−βϕe−γψ dλ+ βx+ γy0 achieves its minimum uniquely at γ = 0. This function

of γ is convex (by Hölder), strictly convex if ψ is not a.s. constant, and differentiable.
Assuming ψ is not a.s. constant, we need y0 such that

∂

∂γ

{
log

∫
e−βϕe−γψ dλ+ βx+ γy0

}
= 0

at γ = 0. This is the derivative of the log of the moment generating function. Differentiate
under the integral to get

∂

∂γ
log

∫
e−βϕe−γψ dλ =

∫
−ψe−βϕe−γψ dλ∫
e−βϕeγψ dλ

∣∣∣∣
γ=0

= −〈ψ, µβ〉.

So ∂
∂γ [· · · ]|γ=0 = −〈ψ, µβ〉+ y0, and this equals 0 iff y0 = 〈ψ, µβ〉.
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Corollary 1.1.

λ×n
({∣∣∣∣ 1nΨn − 〈ψ, µβ〉

∣∣∣∣ > ε

} ∣∣∣∣ { 1

n
Φn ∈ I

})
≤ e−c·n+o(n),

where c is a constant, I is a short enough interval containing x, and we are using conditional
probability notation.

Remark 1.1. Given 1
nΦn ≈ x, we found that

Ψn ≈ n(its average over { 1
nΦn ≈ n}1)

≈ n〈ψ, µβ〉
= 〈ψ(p1) + · · ·+ ψ(pn), µ×nβ 〉

=

∫
Ψn dµβ,n,

where

dµβ,n(p1, . . . , pn) =
e−βΦn(p1,...,pn) dλ×n(p)∫

e−βΦn dλ×n
= µβ × · · · × µβ

is called the canonical ensemble measure.

1This is called the microcanonical ensemble.
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